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Abstract

The paper offers an intelligent
approach to analyze and
determine the design parameters
minimizing the total cost and
achieving the desired performance
measures in the maintenance float
systems. The expected total cost
in @ maintenance float system
includes the cost of lost
production, the cost of repair
persons and the cost of standby
machines. The developed design
procedure integrates simulation,
metamodel and genetic
algorithms. Neural networks are
able to approximate functions
based on a set of sample data, i.e.
construct metamodels from
simulation results in this study.
The objective of metamodels is to
predict simulation responses in
order to significantly reduce the
amount of simulation runs. The
predictive performance of neural
metamodels comparably
outperforms the traditional
regression metamodels. The
neural metamodels are further
extended to formulate a decision
model! for optimizing the
maintenance float systems by
using genetic algorithms.
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1. Introduction

Owing to the increasing dependence on
advanced manufacturing technologies, the
equipment availability and reliability
become a critical concern in maintenance.
The effective maintenance float system is
constructed to minimize the cost of lost
production incurred by the inherent
unreliability in machines. The information
of equipment availability and reliability will
facilitate in the planning and allocation of
resources to perform necessary tasks and
services.

A maintenance float system can be
considered as a closed queueing network
(refer to Figure 1), in which the machines
alternate among operation, repair and
standby status (Madu and Chanin, 1992;
Madu and Kuei, 1996). In a maintenance float
system (Madu and Chanin, 1992), N
independent and identical machines are
required to be in operation at the same time.
When a failure occurs, the number of
operating units is reduced to N-1. If there
exists any standby unit, the failed unit is
replaced to restore the number of operating
units to N. The failed unit goes in for repair
and is returned to a standby status if the total
number of operating units at the time of
completing repair is up to N. Otherwise, it is
sent into operation. It is assumed that the
failed unit is completely rejuvenated after
repair.

The expected total cost TC in a
maintenance float system includes the cost of
lost production, the cost of repair persons
and the cost of standby machines. The cost of
lost production is incurred when a machine
breaks down and waits for repair. The
expected total cost can be stated as (Madu
and Chanin, 1992):
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N
TC = Z Ci(n—-F)P(n)+C,S+CF, (1)

N>F

where N is the number of independent and
identical machines initially in operation or
required in operation at all times; S is the
number of independent and identical repair
persons; F' is the maintenance float required
to support the N machines that are in
operation or standby units; C; is the cost of
equipment downtime; C, is the cost per
repair person; C; is the cost of maintaining a
standby unit, and P(n) is the probability that
n units are down.

In order to design an effective maintenance
float system, a model to represent the
relationships between various important
factors and system performance is required.
The intrinsic complexity in the maintenance
system makes analytical models difficult for
presenting the actual environment. Effective
analytical approaches for large-scale systems
with non-Markovian failure distributions are
generally hard to obtain (Madu and Kuei,
1996). Even for small-scale systems with
Markovian properties, the existing
procedures require complicated algorithms
and numerous iterations (Gross ef al., 1983;
Mani and Sarma, 1984; Madu, 1988a, b; Madu
et al., 1990). Approximate models and
efficient approaches are therefore necessary
to address the maintenance float systems.

The modeling and design of a real-world
production system is a difficult and
complicated mission. Simulation is
frequently utilized to study complex
production systems that cannot be resolved
by analytical methods (Szczerbicki, 2000).
Disregarding analytical models, simulation
models have a widespread acceptance in
studying maintenance float systems (Chanin
et al., 1990; Lin, 1996; Madu et al., 1990; Sahu
and Sharam, 1984). Furthermore, Chanin
The current issue and full text archive of this journal is available at
http://www.emeraldinsight.com/0957-6061.htm
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Figure 1
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et al. (1990), Lin (1996), Madu and Chanin
(1992) and Madu and Kuei (1996) applied
hybrid approaches, which combine
simulation and regression metamodeling to
study the maintenance float problems.

It has generally been complicated to
analyze maintenance float networks by
analytical models. Computer simulation
(Madu and Chanin, 1992) offers a
considerably more flexible modeling
approach to address various maintenance
float problems (e.g. complex failure
distributions such as gamma and Erlang-2).
However, simulation commonly generates a
lot of data and tables, and they are difficult to
interpret without statistics summary.
Metamodels can be applied to release this
major limitation of simulation technique.

In the case of regression metamodeling,
one must make assumptions about the form
of the regression equation, which may not be
straight to model builders. Neural networks
recently have been reported to be a
successful statistics tool for approximating
the relationships between input factors and
output responses. In contrast, neural
networks attempt to map relationships
through data without giving a predetermined
function with free parameters. Neural
networks therefore can identify unfamiliar
functional relationships, which are unknown
to managers, between controllable factors
and performance measures in the
maintenance float networks.

This study aims to develop a simulation
metamodeling procedure based on neural
networks, namely neural metamodeling
method. The neural metamodels are further
applied to formulate the decision model for
optimizing the maintenance float system. An
optimization method based on genetic
algorithms (GAs) is developed to resolve the
mathematical model for the economic design
of maintenance float systems.

| 2. The design approach

This study proposes a hybrid analysis
approach, which incorporates simulation,
neural metamodel and genetic algorithms
(GAs) to address the maintenance float

problems. The neural network is adopted to

construct the metamodels of the simulated

systems (estimate the relationships
between the design variables and
simulation responses). A GA-based
optimization method is finally applied to
obtain the optimal combination of design
variables for the simulated maintenance
problem. A single simulation analysis of
large-scale systems requires a huge amount
of execution time and memory. Therefore, it
is necessary to develop a vigorous
approximation to minimize the number of
simulation runs during the optimal systems
design process. The proposed intelligent
approach for the economic design of
maintenance float systems can reduce CPU
time and save computer memory
significantly.

The proposed design procedure for
maintenance float systems has the following
seven steps:

1 Define the maintenance float problem. For
economic design of manitenance float
systems, several primary points should be
issued (Lin, 1996):

+  What is the maintenance problem of
the system?

+  Which performance measures are to be
used?

»  Which factors are involved in the
system?

+  Which factors are the independent and
dependent variables?

2 Construct the simulation model. The
simulation model can then be constructed
through a detailed consideration of the
above issues, and the factors in the
experimental design can be selected. This
model is applied for examination in the
design of a maintenance float system.
Simulation can be adopted to generate the
appropriate data for analysis of the
system performance. Simulation
modeling has been widely discussed in
simulation textbooks (e.g. Law and
Kelton, 1991).

3 Build the experimental design. In the
experimental design for simulation, the
input parameters and structural
assumptions composing a model are called
factors, and the output performance
measures are called responses. A
simulation study usually consists of
several performance measures or
responses of interest. In this step,
designers identify the controllable factors
which might affect the performance
measures (simulation responses) of
interest. The fractional design or Taguchi
design for experimental study can
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delimitate the quantity of data collection
(Kuei and Madu, 1996).

Run the simulation. In simulation,
experimental runs will be conducted with
various settings of the controllable factors
(design variables) according to carefully
designed experiments. Owing to the
random nature of a simulation model, a
single simulation run for each design point
is insufficient to describe the simulation
results. Various random number seeds are
applied to simulate each design point, and
the average simulation results are taken as
the output of each design point.

5 Construct the neural metamodel. The
simulation results are collected for
training the neural networks as
metamodels. Another set of simulation
runs is taken as validation data to test the
accuracy of trained neural metamodels.
The influencing factors are fed into the
input nodes of the neural network, and the
responses of interest are target values
associated with output nodes. As the
training procedure begins, the input-
target patterns from simulation results
are presented to the networks. The error
of approximation is applied to measure
the performance of neural networks. Once
the obtained error (e.g. mean squared
error, MSE) is less than the specified error
level, the neural metamodels can be
generated. The next section provides the
detailed neural metamodeling technique.

6. Formulate the decision model. The
nonlinear functions (neural metamodels),
which depict the approximation between
the design variables and simulation
responses, are generated from the trained
neural networks. The decision model can
be formulated for economic design of
maintenance systems according to the
primary objective of systems design. For
the mathematical model, refer to Section 4.

7 Solve the decision model. The functions
represented by the trained neural
metamodels, which represent the
relationships between the controllable
factors and simulation responses, are
generally nonlinear functions for the
original data set. A GA-based optimization
method is adopted to optimize the
nonlinear decision models stemming from
the neural metamodels. Section 5 will
discuss the further details of GA-based
optimization method.

| 3. Neural metamodeling

Simulation is generally time and memory
consumingAdditionally, the simulation by

itself cannot generate an optimal solution to
the simulated problem. Metamodels, models
of simulation models, are built to easily
interpret the simulated systems and to allow
some explorations from the simulated range
of system states. By using the metamodeling
technique, the simulation model can be
simplified and the model execution time is
reduced and memory is saved dramatically
(Law and Kelton, 1991).

Regression metamodeling was first
proposed by Blanning (1975). The
applications of metamodeling in simulation
have been extensively developed by Kleijnen
(1987) and Law and Kelton (1991). Apart from
approximation approaches, the neural
metamodel (approximation via neural
network) is similar to regression metamodel.
Let x; denote a j factor influencing the
outputs of the real-world system
O ==ulli M r). And, let Y denote the system
response vector (Y= {yx|/k=1,2,..., n}). We
can concentrate on a system with a single
response y; to simplify the discussion. It will
not lose the generality since a multi-response
system can be viewed as a set of single
response systems. The metamodel of each
response in the multi-response system can be
obtained by using a similar process. The
response variable y; is the functions of the
factor vector X. It takes the form as:

Vi = 10150, =55 Xr)- 2)

A simulation model is an abstraction of the
real world system, in which we consider only
a subset of the input factors {x;|j =1.2,..., s}.
Generally, s is significantly smaller than the
unknown r. The simulation response y, is
then defined as a function f; of this subset
and a vector of random numbers v
representing the effect of the excluded inputs.
In this case, yj. is a function f; of s factors,
plus a vector of random numbers v. The
relationship can be expressed as:

M=o, . 0 Xss V). (3)

A neural metamodel is then a further
abstraction, where we select a subset of the
simulation input variables

foa] =112, .4, m. m < s} and depict the
system as:

’Z = f3(X1,X2,...,Xm) + €, (4)

where ¢ denotes a fitting error having an
expected value of zero. The simulation model
represented by f; may be approximated in
turn by a neural metamodel within a specific
experimental range. The above abstraction
for neural metamodel is depicted in Figure 2.
One of the major benefits of neural
networks is the adaptive ability of
generalization of data from the real world
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(Lippmann, 1987). Taking this advantage,
many researchers apply neural networks for
nonlinear regression analysis and have
enhanced results compared to regression in
their applications (e.g. Bode, 2000; Chen,
2001). Recently, neural networks have
received a great deal of attention in
production areas. Zhang and Huang (1995)
presented a rather extensive review of neural
network applications in production.

The proposed approach towards the
simulation metamodeling problem is based
on supervised neural networks.
Backpropagation (BP) neural network is
most extensively used and can provide good
solutions for many industrial applications
(Lippmann, 1987). Further, from experience
and literature reviews, it has been found that
the three-layer BP network is suitable for
almost all problems if enough hidden
neurons are used. Neural networks are
expected to demonstrate comparative
advantages to regression in simulation
metamodeling.

In this paper, neural networks are used to
fit the form of f; to determine the relationship
of design variables, {x;|j=1.2..... m.m < s},
and interesting simulation responses
(performance measures) which are
associated with the primary objective of
systems design. The neural network
approach can be regarded as a statistical
method. Neural networks can learn the
relationship between design parameters and
responses from observed data. However, the
data for teaching neural networks need to be
cautiously selected. In this paper, statistical

Figure 2
The neural metamodeling
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design of experiments is used to observe the
relationship information of interest from the
minimum number of simulation runs.

Experimental designs such as full factorial
design, fractional factorial design and
Taguchi design are often employed to
determine the values of input variables
(Kleijnen, 1987). Provided that the data are
selected using the orthogonal array, the
accurate result using smaller observed
database might be acquired (Montgomery,
2000). The factorial design in high
dimensional problems requires a huge set of
experimental data. The fractional factorial
design and Taguchi method need a smaller
amount of simulation to obtain the desired
output information, particularly in high
dimensional problems. For experimental
designs, two level designs (2%) are usually
adopted due to its simplicity. However, it is
only an appropriate estimator for linear
relationships. Although higher order designs
(e.g. 3F) make the experimental design more
complicated, it is useful under the situation
of nonlinear relationships between input
factors and output responses. The designers
should select the suitable experimental
design for metamodeling with respect to
several aspects involving the number of
input factors, experimental cost and data
analysis accuracy.

Since this study aims to optimize the
maintenance float system with minimal
simulation runs, an orthogonal array L,;(3'%)
is adopted to systematically and cautiously
obtain a smaller amount of simulation than
that of factorial design. In metamodeling, the
orthogonal array is used to limit the training
samples. This saves time and reduces the cost
of conducting a large number of simulation
experiments. However, it may induce the
over-fitting effect. In over-fitting, the neural
network’s output fits the training data too
closely (Smith, 1993). It models the noise in
addition to the underlying function we want
it to find. We can restrict the over-fitting by
limiting the hidden nodes in the network and
by limiting the training epochs. BP as well as
other modeling approaches would achieve a
higher level of accuracy if more data were
provided. However, BP neural network does
not require a larger sample than regression
(Smith, 1993) to achieve the similar accuracy.

In addition, the data used for training a
neural metamodel in this study has been
obtained from a simulation model. Each
systems design has been replicated a number
of times and so the data presented to neural
networks is already smooth and with lower
noise. The systems designer may control the
accuracy of the results for each design by
running more replications and so the noise

[461]
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component in the simulation data can be
reduced. Therefore, the data is more
desirable for the effective training of a neural
metamodel.
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| 4. The decision model

For metamodels, four general goals are

identified by Kleijnen and Sargent (2000):

1 understanding the problem entity;

2 predicting values of the output or
response variable;

3 performing optimization; and

4 aiding the verification and validation of a
simulation model.

This study primarily focuses the
post-metamodeling analysis on simulation
optimization.

In this paper, the objective is to determine
the number of machines initially in
operation (V), the number of standby
machines (/), the number of repair persons
(S) and the appropriate expected repair time
(R) to minimize the expected total cost (7C),
depicted in equation (1). Meanwhile, some
performance measures of maintenance float
systems such as average equipment
utilization (AEU), average repair person
utilization (ASU) and expected waiting time
for repair (AWT) are also intended to satisfy.
The manager may be interested in keeping
the equipment’s availability higher than a
load level. While the manager wants to
effectively manage the repair persons, their
workload may not be overloaded. At the same
time, the waiting time for repair should be
within a reasonable range.

The decision model for the maintenance
float problem can be formulated as:
Minimize:

o
TC =Y _ Ci(n— F)P(n) + ;S + G;F

n>F
C, x AEU x N + C3S + G3F'.

Subject to:
AEU > 0y; (5)

ASU < by;
AWT > 05 hr;
AWT < 64 hr

where ¢, is the lower limit of AEU; 6, is the
upper limit of ASU; and (65, 64) is the allowed
range for AWT. In the above decision model,
AEU, ASU and AWT are functions in terms of
N, S, F and R. These functions are obtained
from the neural metamodels.

|s. Optimal design using genetic
algorithms

Genetic algorithm (GA), developed by
Holland (1975) is a part of evolutionary
algorithms, which is a rapidly growing area
of optimization. GA is found to be useful
where the search space is large, nonlinear
and noisy, and solutions are ill defined
a priori (Fogel, 1994; Goldberg, 1989).
Recently, various ideas for combining GAs
and neural networks have been proposed and
investigated (Sarkar and Yegnanarayana,
1998). There characteristically exist two sorts
of combinations (Schaffer et al., 1992):
1 supportive combinations (they are used
sequentially); and
2 corporative combinations (they are used
simultaneously).

Supportive combinations typically involve
using one of these methods to prepare data
for use by the other. For instance, GA is used
to select features for neural network
classification in the stage of data
pre-processing. Corporative combinations
typically contain the use of GAs to determine
the network connection weights or network
architectures or both. From the survey by
Sarkar and Yegnanarayana (1998), GAs are
successfully used to optimally configure
neural networks so that they have better
learning capability.

This study proposes a supportive
combination of GAs and neural networks to
simulation analysis for optimum systems
design. However, the proposed systems
design approach incorporates GAs with
neural networks for post-training process.
Neural networks are applied to fit the
behavior of design systems (generate
simulation metamodels), and GAs are then
used to optimize the design systems based on
the trained neural networks. The distinctive
benefit of the developed approach is the
extensive reduction of simulation runs and
computational requirement required to
generate an optimum design.

For a complete discussion of GA and its
applications, refer to Goldberg (1989). The
general schema of a GA is as follows:

» Step 1. Start with a population of
individuals.

« Step 2. Evaluate fitness of all initial
individuals.

= Step 3. Select subpopulation (parents)
stochastically for children reproduction
(selection operator).

+  Step 4. Recombine selected parents
stochastically (crossover operator).

»  Step 5. Perturb the mated population
stochastically (mutation operator).
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» Step 6. Evaluate the fitness of mated
population.

» Step 7. Check for termination criterion
and stop or return to Step 3.

Several basic items of the specific GA
implementation for economic design of
maintenance float systems are discussed as
follows:

* Encoding. A real value encoding is used
herein, so that each solution of design
parameters is encoded as a vector of real
value coefficients. For the integer
variable, it is obtained from rounding the
continuous value to the nearest integer.

* Evaluation. The real values in X are then
inserted into the mathematical model
(refer to Section 4) to obtain the relative
objective function value. For roulette
wheel selection method, it is required to
transform the objective values into fitness
values in such way that the fitter one has
the larger fitness values.

» Arithmetic crossover. The crossover

operator applied here is arithmetic
crossover (Gen and Cheng, 1997). The
arithmetic crossover is defined as the
combination of two chromosomes X; and
X, as follows:

X;=rX;+(1-rXy;
Xy =rXs+ (1 -rXy, (6)

where r € (0,1). The probability of
crossover is set as p., i.e. on average,
DPc % 100% of chromosomes undergo
Ccrossover.

« Nonuniform mutation. The nonuniform

mutation (Gen and Cheng, 1997) is utilized
in this algorithm. For a given parent X, if
the element x; of it is selected for
mutation, the resulting offspring is

51l < X by Xn|, where x;. is randomly
selected from the two possible choices
(with equal probability):

Xy = % + AL, X7 — xp)

or
X%, = Xp AL 20 %), (7

where x! and xf are the upper and lower
bounds for x;. The function A(¢,q) returns
a value in the range in [0, g] such that the
value of A(a,q) approaches to zero as ¢
increases (¢ is number of current
generation). It takes the form as:

~:
Al q)=q X1 % (1—7> ) (8)

where r is a random number from [0, 1], T
is the maximum number of generations,
and b is a parameter determining the

degree of nonuniformity. The probability
of mutation is set as p,,, i.e. on average,
Pm x 100 percent of total elements in
population would undergo mutation.
Every element has an equal chance to be
mutated.

| 6. A maintenance float system

6.1 Description of the problem

The maintenance float system studied herein
is based on the illustrative example
presented by Madu and Kuei (1996). This
example considers a manufacturing system
that operates on a 24-hour operation with
several independent and identical machine
tools. Figure 1 presents this maintenance
float problem. Both the failure and repair
times of these machines follow the Erlang-2
distribution. When a machine tool fails, a
standby unit replaces it, if any exists, while it
goes through repair. The operations manager
is interested in satisfying the equipment’s
availability load 90 per cent of the time.
Meanwhile, the manager wants the expected
waiting time for repair to be within [0.5, 1.0]
hour. To effectively manage repair persons,
the utilization of repair persons is expected
to be higher than 0.85.

To achieve the above performance
measures, the manager would like to know:
» the number of machine tools required;

« the number of standby machine tools;
+ the number of repair persons; and
« the expected repair time.

The manager makes a simulation experiment
to answer the above questions. These design
variables are taken as controllable factors in
the simulation experimental design. The
output information of simulation experiment
helps managers learn more about which
factors are important and how they might
affect the performance measures (responses).
Metamodeling and optimization techniques
can then be applied to seek a combination of
factors that optimizes the decision objective.
The cost data and allowed limit for each
performance measure are listed in Table I.

6.2 Solution of the problem

The optimum design of the above

maintenance float system is generated by

using the proposed approach descibed in

Sections 2 to 5:

< Step 1 (define the maintenance float
problem). The maintenance float system
studied herein is illustrated in the
previous subsection, the further details of
this problem can be found in the literature
(Madu and Kuei, 1996). Three performance
measures including average equipment
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Table |

Data for the illustrative maintenance float system

C;=$500/day
0,=0.85

C,=$240/day
f)g—:OShr

utilization (AEU), average repair person
utilization (ASU) and avergage waiting
time for repair (AWT) are taken into
consideration. The independent factors
are number of independent and identical
machine tools (), number of standby
machine tools (F), number of repair
persons (S) and expected repair time (R).
The dependent factors (interested
simulation responses) include the three
performance measures, AEU, ASU and
AWT.

s Step 2 (construct the simulation model). A
simulation model is built for examination
in the design of a maintenance float system
using GPSS/H (Madu and Kuei, 1996).

+ Step 3 (build the experimental design).
Taking the four controllable factors
identified in Step 1, an orthogonal array is
adopted to design the simulation
experiment. The simulation runs will be
conducted according to the various
settings of controllable factors shown in
Table II.

(C3=$300/day
04,=1.0hr

#=0.9

» Step 4 (run the simulation). The simulation
model is designed to yield information on
the above three performance measures.
The average realization of ten replications
is used to represent a single run for each
of the performance measures (i.e. 30
replications for each design point). The
simulation results for each design point
are summarized in Table II. Another set of
simulation data shown in Table III is
generated for validating the accuracy of
the neural metamodel.

» Step 5 (construct the neural metamodel). To
construct the neural metamodel for the
maintenance float system, a set of training
data (refer to Table II) is obtained from the
simulation experiments conducted in
Steps 3 and 4. The four factors (N, S, R, F)
are fed into the input nodes of neural
network, and the three interested
responses (AEU, ASU, AWT) are target
values associated with output nodes. The
BP-specific parameters are set as follows:
learning rate = 0.1, momentum = 0.9,

Table I
Simulation results from experimental design for training data
Run N S R F AEU ASU AWT
il 40 16 6 10 0.948 0.711 0.06
2 40 16 T 13 0.952 0.833 0.34
3 40 16 8 16 0.935 0.935 1.38
4 40 18 6 13 0.981 0.654 0.02
5 40 18 7 16 0.984 0.765 0.13
6 40 18 8 10 0.886 0.787 0.15
7 40 20 6 16 0.996 0.597 0
8 40 20 1 10 0.921 0.644 0.01
9 40 20 8 13 0.934 0.748 0.07
10 45 16 6 16 0.984 0.829 0.33
11 45 16 7 10 0.886 0.872 0.53
12 45 16 8 13 0.857 0.964 2.01
13 45 18 6 10 0.933 0.7 0.04
14 45 18 s 13 0.938 0.82 0.23
15 45 18 8 16 0.925 0.924 1.02
16 45 20 6 13 0.97 0.654 0.01
17 45 20 7 16 0.973 0.766 0.1
18 45 20 8 10 0.869 0.782 0.11
19 50 16 6 13 0.94 0.881 0.56
20 50 16 7 16 0.892 0.975 242
21 50 16 8 10 0.783 0.978 2.65
22 50 18 6 16 0.977 0.814 0.22
23 50 18 T 10 0.877 0.853 0.35
24 50 18 8 13 0.856 0.95 1.43
25 50 20 6 10 0.919 0.69 0.02
26 50 20 7 13 0.923 0.808 0.16
27 50 20 8 16 0.913 0.913 0.76
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Table Il
Simulation results for validation data
Run N S R F AEU ASU AWT
q 47 17 6.0 14 0.969 0.803 0.20
2 42 16 7.4 14 0.899 0.873 0.55
3 48 18 8.0 13 0.873 0.931 1.06
4 43 20 7.4 12 0.926 0.737 0.06
5 42 17 T2 15 0.960 0.854 0.42
6 41 19 6.0 il 0.960 0.621 0.01
7 45 16 6.2 14 0.964 0.842 0.37
8 43 18 6.4 10 0.927 0.708 0.05
9 49 19 7.6 15 0.919 0.900 0.65
10 44 17 8.0 16 0.915 0.947 1.15

learning epochs = 5,000, and the initial
weights are randomly generated between
[-0.3, 0.3].

Several neural network achitectures are
run. The mean squared errors (MSE) of
training data and validation data for
various network architectures are
summarized in Table IV. Observing from
this table, the resulting information of
function approximation by neural
metamodel is more accurate than that of
regression metamodel. The 4-5-3
architecture has comparably lowest MSE;
the trained neural network of this
architecture is taken as the simulation
metamodel for the studied maintenance
float system. Generally, the MSE of
validation data is larger than that of
training data because the network focuses
on reducing the latter, not the former.
From Figure 3, the validation error
plummets and never goes up. It means the
network with five hidden nodes does not
have enough nodes to over-fit. The other
network architectures in Table IV have
similar behaviors.

From Table 1V, the 4-5-3 architecture is
adopted to generate neural metamodel for
this problem because it has the best
predictive capability. The CPU time of
learning for 4-5-3 architecture is 9.5s. In

terms of MSE values of performance

measures (AEU, ASU and AWT) shown in
Table IV, the predictive power of neural
metamodel is satisfactory. Comparing the
results of regression and neural
metamodels (refer to Table I1V), the BP
network outperforms regression in
simulation metamodeling.

Since this study aims to optimize the
maintenance float system design with
minimal simulation runs, an orthogonal
array Lo;(33) is adopted to systematically
and cautiously limit the training samples
for neural networks. A leave-one-out
method is suited to validate the accuracy
of networks with small databases (Reich
and Barai, 1999). The leave-one-out
validation test is conducted by using the
27 patterns in Table II. The training and
validation errors of these 27 leave-one-out
validation tests are summarized in
Table V. Since these 27 leave-one-out tests
iteratively select 26 training patterns and
one testing pattern, the training data does
not unbiased cover the experimental
space of the orthogonal design. Therefore,
the validation errors of the 27 leave-one-
out tests shown in Table V are comparably
higher than the errors shown in Table IV.
However, the result of validation error
indicates that the neural network
metamodel is credible. The results

Validation MSE

Table IV
Prediction errors of training and validation for various network architectures
Training MSE
AEU ASU

4-3-3 0.000102 0.000172
443 0.000037 0.000029
4-5-3 0.000015 0.000041
4-6-3 0.000016 0.000035
4-7-3 0.000048 0.000065
4-8-3 0.000013 0.000018
4-9-3 0.000005 0.000007
4-10-3 0.000005 0.000007
Regression 0.000228 0.000122

AWT AEU ASU AWT
0.005575 0.000066 0.000028 0.005264
0.005009 0.000042 0.000077 0.001225
0.004306 0.000025 0.000019 0.001070
0.001478 0.000019 0.000022 0.001070
0.002377 0.000027 0.000193 0.007800
0.000389 0.000011 0.000062 0.007820
0.000177 0.000014 0.000034 0.008512
0.000135 0.000020 0.000038 0.007654
0.042439 0.000056 0.000179 0.025346
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Systems 0.025+— measures of average equipment

14/5 [2003] 458467 utilization (AEU), average repair person
utilization (ASU) and avergage waiting

time for repair (AWT) are 0.95, 0.87 and

0.51hr, respectively. The proposed

0.015+ GA-based optimization algorithm requires

5.4s to generate this optimum design.

0.020+

Error

0.010+
7. Concluding remarks
0.005-
;{ This paper demonstrates how simulation,
el e I R e neural metamodels and genetic algorithms
0.000 can easily be combined to optimize the

Intervals Elapsed complicated maintenance float networks that

are hard to be resolved analytically. The
information of equipment availability and
reliability will assist the planning and
allocation of resources to perform essential
tasks and services. The effective

demonstrate the effectiveness of neural
metamodeling for the maintenance float
system.

«  Step 6 (formulate the decision model). In
Step 5, the neural metamodel is generated, j5intenance float system is constructed to
and the nonlinear functions represent the  minimize the cost of lost production incurred
relationships between the design by the inherent unreliability in systems. This
variables and performance measures can  paper proposes an intelligent design

thus be obtained. The decision model for  approach to select the optimum combination

the maintenance float system is of design parameters to achieve the desired
formulated using the functions generated performance measures in maintenance float
from the neural model and the data systems at the minimum cost. The developed
presented in Table L procedure incorporates simulation, neural

+  Step 7 (solve the decision model). The networks and genetic algorithms. Neural
economic design of the maintenance float  petworks are appropriate for constructing
system can be obtained by solving the simulation metamodels. The resulting
decision model, which stems from the information of function approximation by
neural metamodel. The proposed neural metamodel is more accurate than that

GA-based optimization method is adopted  of regression metamodel. Using the GA-based
to solve the decision model. In this paper, optimization method, the proposed approach
the proposed GA has been implemented in  is also more practical than enumerating all
C*~. The GA-specific parameters are set as  possible simulation alternatives in the
follows: Z = 100 (population size), =500, factors and objective function. From the

P. =095, P,,=0.05 and b=2. After illustrative example, the advantages of the
resolving the formulated decision model,  developed procedure can be concluded as
the optimum combination of design follows: first, the number of simulation runs
variables involves 42 identical and required to generate an optimum design
independent machine tools, 16 standby is reduced, and thus the computational
machine tools, 14 repair persons, and the requirement is significantly reduced; second,
expected repair time is 6.93hr in the the procedure is simple and easy to

illustrative example. The minimum total  implement; and third, it enables the

Table V
Summary of 27 leave-one-out validation tests of 4-5-3 network
AEU ASU AWT e,

Training

Average MSE 0.000017 0.000034 0.003676

Standard deviation MSE 0.000020 0.000043 0.008915
Validation

Average MSE 0.000068 0.000073 0.010085

Standard deviation MSE 0.000182 0.000240 0.037708
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complicated maintenance float problems to
be resolved effectively.
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